a) \(f(x) = \frac{4e^x}{(e^x+1)^2} \quad \text{mit} \quad D_f = \mathbb{R} \)

b) \(g(x) \) liegt oberhalb der \(x \)-Achse, da
- der Zähler \(4e^x > 0 \) erfüllt, weil \(e^x > 0 \) für alle \(x \) in \(\mathbb{R} \) gilt.
- der Nenner als vollständiges Quadrat ohne Nullstelle und \((e^x+1)^2 > 0 \) erfüllt.

\[
\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4e^x}{e^x+2e^x+1} = \lim_{x \to +\infty} \frac{4}{4x^2+4} = 0
\]

\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4e^x}{e^x+2e^x+1} = \lim_{x \to +\infty} \frac{4e^{-x}}{e^{-x}+2e^{-x}+1} = 0
\]

Somit ist \(y = 0 \) horizontale Asymptote von \(G_f \).

Schnittpunkt \(S \) von \(G_f \) mit \(y \)-Achse:

\(x_s = 0 \) : \(f(0) = \frac{4 \cdot 1}{(1+1)^2} = 1 \quad S(0|1) \)

b) Näherungsweise Bestimmung von \(f' \) an der Stelle \(P(x_0, f(x_0)) \) durch Erreichen der Tangente an \(G_f \) im Punkt \(P \) und Bestimmung der Tangentensteigung \(m = f'(x_0) \) mit Hilfe der Steigungsdreiecks, siehe unten.

hier: \(f'(x) = \frac{\Delta y}{\Delta x} = -\frac{2}{5} = -0.4 = m \)

\[
F(x) = \frac{c}{e^x+1} \quad \text{und} \quad F'(x) = \frac{-c \cdot e^x}{(e^x+1)^2} = -\frac{4e^x}{(e^x+1)^2} = f(x)
\]

Somit: \(c = -4 \) \quad \Rightarrow \quad F(x) = \frac{-4}{e^x+1} \quad \text{mit} \quad D_f = \mathbb{R}

c) \(\lim_{x \to +\infty} F(x) = 0 \)

\[
\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} \frac{-4}{e^x+1} = -\frac{4}{e^x+1} \quad \text{und} \quad \lim_{x \to +\infty} F(x) = -\frac{4}{e^x+1} = -\frac{4}{e^x+1} > 0
\]

Da \(F'(x) = f(x) > 0 \) auf \(\mathbb{R} \) gilt, ist \(F \) auf ganz \(\mathbb{R} \) streng monoton wachsend.
e) \(P(0,1-2) \) vgl. c)

f) \(A(u) = \int p(x) \, dx = [F(x)]_{-u}^{u} = F(u) - F(-u) = \)

\[
-\frac{4}{e^{u}+1} - \frac{4}{e^{-u}+1} = \frac{-4(e^{-u} + e^{u})}{(e^{u}+1)(e^{-u}+1)}
\]

\[
= \frac{-4(e^{-u} - e^{u})}{1 + e^{-u} + e^{u} + 1}
\]

\[
= \frac{4e^{u} - 4e^{-u}}{2 + e^{-u}e^{u}} \quad \text{für} \quad u > 0
\]

\[
\lim_{u \to +\infty} A(u) = \lim_{u \to +\infty} \frac{4e^{u} - 4e^{-u}}{2 + e^{-u}e^{u}}
\]

\[
= \lim_{u \to +\infty} \frac{4 - 4e^{-2u}}{2e^{u} + e^{-2u} + 1} \to \frac{4 - 0}{0 + 0 + 1} = 4
\]

geometrische Interpretation des Grenzwertes:

Inhalt des Flächenstücks zwischen Graph \(f \) und \(x-\)Achse, das nicht bis ins Unendliche erstreckt.

2) \(N(x) = a \cdot e^{bx} \); \(a, b \in \mathbb{R} \)

a) \(N(0) = a \cdot e^{0} = 0,5 \quad \Rightarrow a = 0,5 \quad \Rightarrow 0,5 \cdot e^{8b} = 23,4 \)

\[
N(8) = a \cdot e^{8b} = 23,4
\]

\[
\Rightarrow 8b = \log \left(\frac{23,4}{0,5} \right) = \log(46,8)
\]

\[
b = \frac{\log(46,8)}{8} \approx 0,48
\]

\(N(x) = 9,5 \cdot e^{0,48x} \)

b) \(N(4) = 0,5 \cdot e^{4 \cdot 0,48} \approx 3,41 \) (Mio)

prozentuale Abweichung: \(\frac{3,18 - 3,41}{3,18} \approx 10\% \)

für 2007: \(x = 16 \) \(N(16) = 95 \cdot e^{16 \cdot 0,48} = 1082 \) (Mio)

Bei ca. 80 Million Einwohner in Deutschland müsste jeder Einwohner im Schutt nur als 10 Kilo salmonen Verhältnisse haben. Das ist unrealistisch, das exponentielle Wachstum reicht nicht für es.

c) \(N(0) = 0,5; \quad N(1) = 1 \quad \Rightarrow 0,5 \cdot e^{0,48x} \)

\[
\Rightarrow 2 = e^{0,48x} \quad \Rightarrow \log 2 = 0,48 \overline{x}
\]

\[
\Rightarrow \overline{x} = \frac{\log 2}{0,48} \approx 1,4 \text{ (Jahre)}
\]

Die Verdoppelungszeit beträgt etwa 1,4 Jahre.
zu 1b) \[\Delta y = -2 \]

zu 1e) \[\Delta x = 5 \]